Partial Regularity for Singular Solutions to the Monge-Ampère Equation
نویسندگان
چکیده
منابع مشابه
Partial Regularity of Brenier Solutions of the Monge-ampère Equation
Given Ω,Λ ⊂ R two bounded open sets, and f and g two probability densities concentrated on Ω and Λ respectively, we investigate the regularity of the optimal map ∇φ (the optimality referring to the Euclidean quadratic cost) sending f onto g. We show that if f and g are both bounded away from zero and infinity, we can find two open sets Ω′ ⊂ Ω and Λ′ ⊂ Λ such that f and g are concentrated on Ω′ ...
متن کاملSobolev Regularity for Monge-Ampère Type Equations
In this note we prove that, if the cost function satisfies some necessary structural conditions and the densities are bounded away from zero and infinity, then strictly c-convex potentials arising in optimal transportation belong to W 2,1+κ loc for some κ > 0. This generalizes some recents results [10, 11, 24] concerning the regularity of strictly convex Alexandrov solutions of the Monge-Ampère...
متن کاملContinuity Estimates for the Monge-Ampère Equation
In this paper, we study the regularity of solutions to the Monge-Ampère equation. We prove the log-Lipschitz continuity for the gradient under certain assumptions. We also give a unified treatment for the continuity estimates of the second derivatives. As an application we show the local existence of continuous solutions to the semi-geostrophic equation arising in meteorology.
متن کاملRegularity of Weak Solutions to the Monge–ampère Equation
We study the properties of generalized solutions to the Monge– Ampère equation detD2u = ν, where the Borel measure ν satisfies a condition, introduced by Jerison, that is weaker than the doubling property. When ν = f dx, this condition, which we call D , admits the possibility of f vanishing or becoming infinite. Our analysis extends the regularity theory (due to Caffarelli) available when 0 < ...
متن کاملRegularity for Solutions of the Monge-ampère Equation
In this paper we prove that a strictly convex Alexandrov solution u of the Monge-Ampère equation, with right hand side bounded away from zero and infinity, is W 2,1 loc . This is obtained by showing higher integrability a-priori estimates for Du, namely Du ∈ L log L for any k ∈ N.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications on Pure and Applied Mathematics
سال: 2014
ISSN: 0010-3640
DOI: 10.1002/cpa.21534